69 research outputs found

    A regression method for real-time video quality evaluation

    Get PDF
    No-Reference (NR) metrics provide a mechanism to assess video quality in an ever-growing wireless network. Their low computational complexity and functional characteristics make them the primary choice when it comes to realtime content management and mobile streaming control. Unfortunately, common NR metrics suer from poor accuracy, particularly in network-impaired video streams. In this work, we introduce a regression-based video quality metric that is simple enough for real-time computation on thin clients, and comparably as accurate as state-of-the-art Full-Reference (FR) metrics, which are functionally and computationally inviable in real-time streaming. We benchmark our metric against the FR metric VQM (Video Quality Metric), finding a very strong correlation factor

    SVCEval-RA: an evaluation framework for adaptive scalable video streaming

    Full text link
    [EN] Multimedia content adaption strategies are becoming increasingly important for effective video streaming over the actual heterogeneous networks. Thus, evaluation frameworks for adaptive video play an important role in the designing and deploying process of adaptive multimedia streaming systems. This paper describes a novel simulation framework for rate-adaptive video transmission using the Scalable Video Coding standard (H.264/SVC). Our approach uses feedback information about the available bandwidth to allow the video source to select the most suitable combination of SVC layers for the transmission of a video sequence. The proposed solution has been integrated into the network simulator NS-2 in order to support realistic network simulations. To demonstrate the usefulness of the proposed solution we perform a simulation study where a video sequence was transmitted over a three network scenarios. The experimental results show that the Adaptive SVC scheme implemented in our framework provides an efficient alternative that helps to avoid an increase in the network congestion in resource-constrained networks. Improvements in video quality, in terms of PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) are also obtained.Castellanos Hernández, WE.; Guerri Cebollada, JC.; Arce Vila, P. (2017). SVCEval-RA: an evaluation framework for adaptive scalable video streaming. Multimedia Tools and Applications. 76(1):437-461. doi:10.1007/s11042-015-3046-yS437461761Akhshabi S, Begen AC, Dovrolis C (2011) An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP. In: Proceedings of the second annual ACM conference on Multimedia systems. ACM, pp 157–168Alabdulkarim MN, Rikli N-E (2012) QoS Provisioning for H.264/SVC Streams over Ad-Hoc ZigBee Networks Using Cross-Layer Design. In: 8th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). pp 1–8Birkos K, Tselios C, Dagiuklas T, Kotsopoulos S (2013) Peer selection and scheduling of H. 264 SVC video over wireless networks. In: Wireless Communications and Networking Conference (WCNC), 2013 IEEE. pp 1633–1638Castellanos W (2014) SVCEval-RA - An Evaluation Framework for Adaptive Scalable Video Streaming. In: SourceForge Project. http://sourceforge.net/projects/svceval-ra/ . Accessed 1 May 2015Castellanos W, Guerri JC, Arce P (2015) A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks. Comput Commun. http://dx.doi.org/10.1016/j.comcom.2015.08.012Castellanos W, Arce P, Acelas P, Guerri JC (2012) Route Recovery Algorithm for QoS-Aware Routing in MANETs. Springer Berlin Heidelberg, Bilbao, pp. 81–93Chikkerur S, Sundaram V, Reisslein M, Karam LJ (2011) Objective video quality assessment methods: A classification, review, and performance comparison. Broadcast, IEEE Trans on 57:165–182Choupani R, Wong S, Tolun M (2014) Multiple description coding for SNR scalable video transmission over unreliable networks. Multimed Tools Appl 69:843–858. doi: 10.1007/s11042-012-1150-9CISCO Corp. (2014) Cisco Visual Networking Index Forecast and Methodology. In: White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf.Dai M, Zhang Y, Loguinov D (2009) A unified traffic model for MPEG-4 and H. 264 video traces. IEEE Trans Multimedia 11:1010–1023Detti A, Bianchi G, Pisa C, et al. (2009) SVEF: an open-source experimental evaluation framework for H.264 scalable video streaming. In: IEEE Symposium on Computers and Communications. pp 36–41Espina F, Morato D, Izal M, Magaña E (2014) Analytical model for MPEG video frame loss rates and playback interruptions on packet networks. Multimed Tools Appl 72:361–383. doi: 10.1007/s11042-012-1344-1Fiems D, Steyaert B, Bruneel H (2012) A genetic approach to Markovian characterisation of H.264 scalable video. Multimedia Tools Appl 58:125–146Floyd S, Handley M, Kohler E Datagram Congestion Control Protocol (DCCP). http://tools.ietf.org/html/rfc4340 . Accessed 17 Feb 2014Floyd S, Padhye J, Widmer J TCP Friendly Rate Control (TFRC): Protocol Specification. http://tools.ietf.org/html/rfc5348 . Accessed 17 Feb 2014Fraz M, Malkani YA, Elahi MA (2009) Design and implementation of real time video streaming and ROI transmission system using RTP on an embedded digital signal processing (DSP) platform. In: 2nd International Conference on Computer, Control and Communication, 2009. IC4 2009. pp 1–6ISO/IEC (2014) Information technology - Dynamic adaptive streaming over HTTP (DASH) - Part 1: Media presentation description and segment formats.ITU-T (2013) Rec. H.264 & ISO/IEC 14496-10 AVC. Advanced Video Coding for Generic Audiovisual Services.Ivrlač MT, Choi LU, Steinbach E, Nossek JA (2009) Models and analysis of streaming video transmission over wireless fading channels. Signal Process Image Commun 24:651–665. doi: 10.1016/j.image.2009.04.005Karki R, Seenivasan T, Claypool M, Kinicki R (2010) Performance Analysis of Home Streaming Video Using Orb. In: Proceedings of the 20th International Workshop on Network and Operating Systems Support for Digital Audio and Video. ACM, New York, NY, USA, pp 111–116Ke C-H (2012) myEvalSVC-an Integrated Simulation Framework for Evaluation of H. 264/SVC Transmission. KSII Trans Internet Inf Syst (TIIS) 6:377–392. doi: 10.3837/tiis.2012.01.021Ke C-H, Shieh C-K, Hwang W-S, Ziviani A (2008) An Evaluation Framework for More Realistic Simulations of MPEG Video Transmission. J Inf Sci Eng 24:425–440Klaue J, Rathke B, Wolisz A (2003) Evalvid–A framework for video transmission and quality evaluation. In: Computer Performance Evaluation. Modelling Techniques and Tools. Springer, pp 255–272Le TA, Nguyen H (2014) End-to-end transmission of scalable video contents: performance evaluation over EvalSVC—a new open-source evaluation platform. Multimed Tools Appl 72:1239–1256. doi: 10.1007/s11042-013-1444-6Lie A, Klaue J (2008) Evalvid-RA: trace driven simulation of rate adaptive MPEG-4 VBR video. Multimedia Systems 14:33–50. doi: 10.1007/s00530-007-0110-0Moving Pictures Experts Group and ITU-T Video Coding Experts Group (2011) H. 264/SVC reference software (JSVM 9.19.14) and Manual.Nightingale J, Wang Q, Grecos C (2014) Empirical evaluation of H.264/SVC streaming in resource-constrained multihomed mobile networks. Multimed Tools Appl 70:2011–2035. doi: 10.1007/s11042-012-1219-5Parmar H, Thornburgh M (2012) Real-Time Messaging Protocol (RTMP) Specification. AdobePolitis I, Dounis L, Dagiuklas T (2012) H. 264/SVC vs. H. 264/AVC video quality comparison under QoE-driven seamless handoff. Signal Process Image Commun 27:814–826Pozueco L, Pañeda XG, García R, et al. (2013) Adaptable system based on Scalable Video Coding for high-quality video service. Comput Electr Eng 39:775–789. doi: 10.1016/j.compeleceng.2013.01.015Pozueco L, Pañeda XG, García R, et al. (2014) Adaptation engine for a streaming service based on MPEG-DASH. Multimed Tools Appl 1–20. doi: 10.1007/s11042-014-2034-ySchwarz H, Marpe D, Wiegand T (2007) Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Trans Circ Syst Video Technol 17:1103–1120. doi: 10.1109/TCSVT.2007.905532Seo H-Y (2013) An Efficient Transmission Scheme of MPEG2-TS over RTP for a Hybrid DMB System. ETRI J 35:655–665. doi: 10.4218/etrij.13.0112.0124Sohn H, Yoo H, De Neve W, et al. (2010) Full-Reference Video Quality Metric for Fully Scalable and Mobile SVC Content. IEEE Trans Broadcast 56:269–280. doi: 10.1109/TBC.2010.2050628Sousa-Vieira M-E (2011) Suitability of the M/G/∞ process for modeling scalable H.264 video traffic. In: Analytical and Stochastic Modeling Techniques and Applications. Springer, pp 149–158Tanwir S, Perros H (2013) A Survey of VBR Video Traffic Models. IEEE Commun Surv Tutor 15:1778–1802. doi: 10.1109/SURV.2013.010413.00071Tanwir S, Perros HG (2014) VBR Video Traffic Models. Wiley, HobokenThe Network Simulator (NS-2). http://www.isi.edu/nsnam/ns . Accessed 6 Feb 2015Unanue I, Urteaga I, Husemann R, et al. (2011) A Tutorial on H. 264/SVC Scalable Video Coding and its Tradeoff between Quality, Coding Efficiency and Performance. Recent Advances on Video Coding 1–24.Van der Auwera G, David PT, Reisslein M, Karam LJ (2008) Traffic and quality characterization of the H. 264/AVC scalable video coding extension. Adv Multimedia 2008:1Wang Y, Claypool M (2005) RealTracer—Tools for Measuring the Performance of RealVideo on the Internet. Multimed Tools Appl 27:411–430. doi: 10.1007/s11042-005-3757-6Wang Z, Lu L, Bovik AC (2004) Video quality assessment based on structural distortion measurement. Signal Process Image Commun 19:121–132. doi: 10.1016/S0923-5965(03)00076–6Wien M, Schwarz H, Oelbaum T (2007) Performance Analysis of SVC. IEEE Trans Circ Syst for Video Technol 17:1194–1203. doi: 10.1109/TCSVT.2007.905530YUV video repository. ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/ . Accessed 10 Jan 201

    Hybrid video quality prediction: reviewing video quality measurement for widening application scope

    Get PDF
    A tremendous number of objective video quality measurement algorithms have been developed during the last two decades. Most of them either measure a very limited aspect of the perceived video quality or they measure broad ranges of quality with limited prediction accuracy. This paper lists several perceptual artifacts that may be computationally measured in an isolated algorithm and some of the modeling approaches that have been proposed to predict the resulting quality from those algorithms. These algorithms usually have a very limited application scope but have been verified carefully. The paper continues with a review of some standardized and well-known video quality measurement algorithms that are meant for a wide range of applications, thus have a larger scope. Their individual artifacts prediction accuracy is usually lower but some of them were validated to perform sufficiently well for standardization. Several difficulties and shortcomings in developing a general purpose model with high prediction performance are identified such as a common objective quality scale or the behavior of individual indicators when confronted with stimuli that are out of their prediction scope. The paper concludes with a systematic framework approach to tackle the development of a hybrid video quality measurement in a joint research collaboration.Polish National Centre for Research and Development (NCRD) SP/I/1/77065/10, Swedish Governmental Agency for Innovation Systems (Vinnova

    No-reference image and video quality assessment: a classification and review of recent approaches

    Get PDF

    Fingerprint image enhancement using STFT analysis

    No full text
    Contrary to popular belief, despite decades of research in fingerprints, reliable fingerprint recognition is an open problem. Extracting features out of poor quality prints is the most challening problem faced in this area. This paper introduces a new approach for fingerprint enhancement based on Short Time Fourier Transform(STFT) Analysis. STFT is a well known technique to analyze non-stationary signals. We extend its application to 2D images. The algorithm simultaneously estimates all the intrinsic properties of the fingerprints such as the foreground region mask, local ridge orientation and local frequency orientation. Furthermore we propose a probabilistic approach of robustly estimating these parameters. We compare the proposed approach to other filtering approaches and show that our technique performs favorably. We also objectively measure the improvement in recognition rate due to our enhancement. We obtain a 17 % improvement in the recognition rate on a set of 800 images from the FVC2002 database
    corecore